
Distributed Object-Oriented Applications Supervision

N. Cottin, J. Gaber, O. Baala, M. Wack
fNathanael.Cottin, Jaafar.Gaber, Oumaya.Baala, Maxime.Wackg@utbm.fr

University of Technology of Belfort-Montbeliard
90010 Belfort, France

Abstract

Distributed object-oriented computing allows efficient
use of the Network Of Workstations (NOW) paradigm. How-
ever, the underlying middlewares used to develop and de-
ploy such applications do not provide developers with any
standard supervision mechanism so that they know exactly
what happens during their applications execution.
This paper analyzes distributed CORBA and JAVA-based
applications to point out functional and management su-
pervision information which has to be gathered from the
objects. Developers will use this information to improve the
Quality of Service (QoS) of their distributed object-oriented
applications (DOA).

Keywords : Distributed computing, supervision, QoS, JAVA,
CORBA.

1 Introduction

We consider distributed applications from a supervision
perspective. Supervision is based on observation whereas
management uses observed information to perform modi-
fications on the supervised entities. Thus, managing dis-
tributed object-oriented applications (DOA) requires super-
vision mechanisms. Management systems rely on ad-hoc
supervision indicators to take QoS improvement decisions.
Management tools developement is a complex process. De-
velopers tasks can be simplified by using a supervision API.
In this paper, we present a supervision API and propose su-
pervision indicators relevant to a management system. We
focus on CORBA and JAVA-based applications [1] to show
how this API could be implemented.
The rest of the paper is organized as follows : next section
provides an overview of the work related to the distributed
applications QoS improvement issue. Then we present the
background material necessary to seize our study. This
includes distributed applications representation and super-
vision implementation. These two sections lead to intro-
duce a supervision API inherited by distributed objects as

well as supervision indicators based on this API. We finally
conclude by presenting our work in progress following our
study.

2 Related work

Some projects have proposed ways to improve dis-
tributed CORBA-based applications QoS in terms of re-
sponse time and overhead. Among them, QUARTZ, LSS
and DOMS are representative of this research area. How-
ever, QUARTZ and LSS are dedicated to special-purpose
applications such as media and service-based applications
whereas DOMS is a general-purpose QoS improvement
system. Another way of supervising distributed applica-
tions is to directly instrument the ORB [2]. However, this
solution is ORB-dependant and not portable.

2.1 QUARTZ

Quartz [3] is a generic QoS description environment
integrated with CORBA developped at Trinity College
Dublin. It is used to guarantee that CORBA-based dis-
tributed applications meet specified QoS criteria for control
and transfert of streaming media.
Quartz interprets QoS parameters required by applications
to allocate corresponding resources at system-level. It uses
application and system-level filters to translate QoS con-
straints and allocate resources according to various proto-
cols such as RSVP, TCP/IP and ATM. A C++ prototype us-
ing Iona Orbix has been developped. It uses Windows NT
real time capabilities as well as the audio and video stream-
ing mechanism standardized by the OMG [4].

2.2 LSS

The IT Research Center of Montreal has designed a ser-
vice facility called Load Sharing Service (LSS) [5]. This
distributed CORBA-based system is used for managing ob-
jects calls when multiple objects provide the same service
type.



This system uses a service-request point of view to perform
load sharing strategies. Distributed objects register to the
CORBA trading service [6] and give the services they are
able to afford. These objects are called Servers because they
are called by Client objects to perform tasks. The load shar-
ing algorithm uses Servers waiting queue lengths to send
Client requests to the less loaded Servers.

2.3 DOMS

Distributed Objects Management System (DOMS) [7]
is a project led by UTBM. It addresses the problems of
CORBA-based distributed objects supervision, applications
management and QoS improvement. Functional and man-
agement information from objects and computers is gath-
ered by agents running on each computer over the net-
work. This information is then sent to a supervision man-
ager which takes objects migration decisions depending on
objects migration ability.

3 Notations

A distributed object-oriented application is a set of dis-
tributed objects which interact with each other locally or
over a network to perform specific tasks. It can be consid-
ered as a dynamic directed-graph G = (O;L) where O is
the set of distributed objects composing the application and
L the set of edges representing links between these objects :

� Distributed objects are assimilated to nodes. At our
supervision level, objects are considered as entities
which may receive and generate calls

� Edges represent dynamic links between objects. Each
edge is oriented from a source to a destination object.
It is weighted by the number of calls which can be
assimilated to the degree of correlation between these
two distributed objects.

4 Supervision implementation

Distributed applications supervision encounters two
main issues :

� Find a way to supervise distributed objects. This must
be as less intrusive as possible to be easily integrated
into existing applications

� Allow observed objects traceability using a reference-
independant identification process.

4.1 Supervision API utilization

The main problem encountered when designing a JAVA-
based management system is to integrate supervision and
management mechanisms into the applications.
Adding supervision functionalities to distributed objects
can be done by making distributed objects inherit supervi-
sion methods from a supervision API [8].
However, CORBA and JAVA-based objects interfaces al-
ready extend the “org.omg.CORBA.Object” class. Instead
of directly inherit from this class, distributed objects (DO)
should inherit from a medium supervision class Observ-
ableDO as described on figure 1.

Figure 1. Supervision API inheritance
classes.

Every distributed object skeleton would then inherit from
an ObservableDO class implementing this API to allow ob-
jects supervision :

import org.omg.*;

public class ObservableDO
extends CORBA.Object
implements DOObserver {
...

}

public interface Obj
extends ObservableDO {
...

}



abstract public class _ObjImplBase
extends CORBA.portable.Skeleton
implements Obj {
...

}

public class ObjImpl
extends _ObjImplBase {
...

}

This instrumentation may be processed during object’s
IDL compilation. Management agents (i.e. daemons) run-
ning as a CORBA service on each computer will therefore
interact with the supervised objects by calling their inher-
ited supervision methods. The overload due to this supervi-
sion mechanism depends on agents activity.
However, supervision systems need to be able to uniquely
identify each observable object supervised to be able to ex-
ploit supervision information gathered by every daemon.

4.2 Distributed objects identification and trace-
ability

Implementing objects supervision includes objects iden-
tification. The identification process must be reference-
independant to allow traceability.
Although using objects references is sufficient to uniquely
identify a given object, it becomes obsolete when this object
migrates from its local host to a distant host. Therefore, its
IOR reference has changed.
This identification should proceed from the underlying mid-
dleware to make sure identifiers are not duplicated, consid-
ering that many objects can instanciate the same class.

5 Supervision API

5.1 Definition

We define a distributed objects interface called DOOb-
server to implement. This abstract class is declared us-
ing the interface description language designed by the
OMG [9] :

typedef sequence<string> set;

interface DOObserver {
attribute string ID;
string getHostName();
long long getCPU();
long long getMEM();
set getCalledObjectsID();

long getCallsNumber(in string ID);
long getWaitingQueueLength();
long long getCallCompletionTime();
long long getAverageExecutionTime();
void objectCall(in string ID);

}

5.2 Description

This supervision interface implemented within a given
distribured object i is described as follows :

� The ID attribute represents i’s identifier mentioned in
the previous section

� getHostName() returns the i’s local host identifier.
This identifier can either be an IP address or a DNS
name

� getCPU() and getMEM() methods express the i’s ac-
tivity in terms of processor and memory consumption

� getCalledObjectsID() is udes to retrieve the set of ob-
jects called by i since its creation date

� getCallsNumber(ID) returns the number of calls gen-
erated by i to the object identified by ID

� getWaitingQueueLength() return the number of objects
waiting for a task handled by i and not currently com-
pleted. This method is used by load sharing manage-
ment systems

� getCallCompletionTime() returns the amount of time
necessary to receive the last invocation result given by
the last called object

� getAverageExecutionTime() returns the average
amount of time necessary to locally handle objects
calls

� objectCall(ID) is executed each time i calls another
distributed object. It updates the G graph edges
weights. This method is complementary to getCall-
sNumber().

This supervision API may be extended to allow objects
management by adding self-migration capabilities [10] [11]
and objects notifications.

6 Supervision indicators

Based on the objects relationships decribed by the appli-
cation G graph and our supervision API, we define supervi-
sion indicators related to distributed objects, objects classes
and applications.



6.1 Object-level indicators

We define in this section indicators related to distributed
objects. We consider each object independantly from other
objects and from their environment.
We point out four object-level indicators :

� ocori;j is the correlation degree between i and j ob-
jects. It corresponds to the getCallsNumber() method
call

� odiffi is i’s scatter level. The more objects are called,
the higher odiffi. This indicator also depends on ob-
jects calls number. It is calculated using the getCalle-
dObjectsID() method

� ocallsi is the average number of calls initiated by i

calculated with the getCallsNumber() method from the
supervision API

� oreli represents i’s functional reliability. The more
objects belonging to different classes are called, the
less reliable i and the lower freli. This indicator is
obtanied by combining the getCalledObjectsID() and
getCallsNumber() methods.

Usually, ocori;j 6= ocorj;i :

� ocori;j = 0 and ocorj;i > 0 means that j should mi-
grate to i’s local host. This relationship is cooperation
unilateral

� When ocori;j > 0, ocorj;i > 0 and ocori;j�ocorj;i >

", i and j are cooperative bilateral. The migrated ob-
ject has the highest object correlation indicator

� In case ocori;j > 0, ocorj;i > 0 and ocori;j �

ocorj;i � ", i and j are cooperative symetrical. De-
pending on i and j migration ability, i can either mi-
grate to j’s local host or j migrate to i’s local host

� At last, j is cooperative unilaterally excluded from i’s
perspective when ocori;j = 0. i and j are cooperative
bilaterally excluded when ocori;j = ocorj;i = 0. In
this case, i and j should migrate in order to be hosted
by two different computers.

When used by a management system, these indicators
express objects weights and reliability. Highly correlated
objects will be migrated so that they perform as many local
calls to each other as possible.

6.2 Class-level indicators

Class-level indicators caracterize objects classes rela-
tionships. They generalize object-level indicators to con-
sider distributed objects at a higher level of abstraction :

� ccora;b expresses the correlation degree between a and
b classes. It represents the average correlation degree
between all the objects belonging to class a and class
b objects

� cdiffa is the diffusion degree of class a. It corre-
sponds to the average diffusion level of each object
instanciating this class

� ccallsa is the average number of calls of every dis-
tributed object of class a

� crela stands for class a functional reliability. This in-
dicator is based on class a objects oreli indicator.

Similarly to object-level relationships, we distinguish
classes cooperative exclusion, cooperative symetry, unilat-
eral cooperation, bilateral cooperation, unilateral cooper-
ation exclusion and bilateral cooperation exclusion.

These indicators are useful when making objects activity
predictions. They inform the management system on the
possible interactions frequency between objects and allow
to compare classes call frequency.

6.3 Application-level indicators

We previously introduced indicators based on object-
level and class-level considerations. We now introduce ob-
jects environment to define application-level indicators. We
particularly distinguish local and distant calls between ob-
jects. Local calls refer to invocations related to objects run-
ning on the same computer whereas distant calls occur be-
tween object hosted on diffrent computers. The call locality
is established using the getHostName() method of the su-
pervision API :

� insidei represents the number of local calls generated
by a given object i

� outsidei is the number of distant calls issued by i to
other objects.

We then define an indicator to express the degree of
membership of a given object i on its local host depending
on i’s local and distant calls :

membershipi =
insidei

(insidei + outsidei)
� 100

This membership degree leads to define a similar indi-
cator for a given computer c which belongs to the set of
supervised computers C. The higher membership degree of
local objects, the more excluded the computer to the rest of
the system :

exclusionc =

P
i2cmembershipi

Card
�
C
�



This exclusion indicator is used to validate management
decisions taken by the management system in terms of dis-
tributed objects location optimization.

7 Conclusion

We introduced in this paper a supervision API which
provides developers with supervision methods which allow
to implement management algorithms. We used this API to
define supervision indicators to value the QoS level of dis-
tributed CORBA and JAVA-based applications in terms of
objects relationships.
Distributed applications QoS improvement is either
achieved by reserving necessary resources or migrating ob-
jects. Our supervision API and indicators are useful in both
cases :

� The supervision API includes objects processor and
memory consumption for their activity to take re-
sources reservation and objects migration decisions.
Using a reference-independant object identifier allows
to perform objects follow up continuously

� The supervision indicators are used to take migration
and placement decisions when coupled with group re-
organization based on strongly connected components
within cooperative graphs [12].

We are currently working on DOMS [7], a CORBA-
based distributed applications QoS improvement prototype
implemented with OOC ORBacus for JAVA. It uses our su-
pervision indicators to provide developers with a manage-
ment API to integrate management algorithms into their su-
pervised applications.

References

[1] J. Daniel, “Au cœur de CORBA avec Java”, Vuilbert,
Paris, ISBN 2-7117-8659-5, 2000

[2] M. Wegdam, D.-J. Plas, A. van Halteren, B. Nieuwen-
huis, “ORB Instrumentation for Management of
CORBA”, Proc. of the International Conference on Par-
allel and Distributed Processing Techniques and Appli-
cations (PDPTA’00), Las Vegas, NV, June 2000

[3] F. Siqueira, “Quartz : A QoS Architecture for Open
Systems”, Ph.D. thesis, Trinity College, University of
Dublin, December 1999

[4] Iona Technologies, Lucent Technologies and Siemens–
Nixdorf, “Control and Management of Audio/Video
Streams”, OMG/97-05-07, July 1997

[5] E. Badidi, R. K. Keller, P. G. Kropf, V. Van Don-
gen, “The Design of a trader-based CORBA Load Shar-
ing Service” Proc. of the Twelfth International Confer-
ence on Parallel and Distributed Computing Systems
(PDCS’99) Fort Lauderdale, FL, August 1999 (to ap-
pear)

[6] Object Management Group, “Trading Object Service
Specification”, formal/2000-06-27, May 00

[7] N. Cottin, “DOMS : une architecture de suivi de la
qualité de service dans les systèmes répartis objet”,
Research report, Universtity of Technology of Belfort-
Montbéliard, France, August 2000

[8] N. Cottin, O. Baala, J. Gaber, M. Wack, “Management
and QoS in Distributed Systems”, Proc. of the Interna-
tional Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’00), Vol. III,
Las Vegas, NV, June 2000

[9] Object Management Group, “OMG IDL to Java Lan-
guage Mapping Specification”, formal/99-07-53, June
1999

[10] T. Schneckenburger, “The Migration Pattern”, Com-
ponent Users Conference, Munich, Germany, July 1997
(to appear)

[11] M. C. Pellegrini, “Reconfiguration d’applications
réparties : application au bus logiciel CORBA”, Ph.D.
thesis, Institut National Polytechnique de Grenoble,
October 2000

[12] H. Adoud, E. Rondeau, T. Divoux, “Configuration
Of Network Architectures For Co-operative Systems”,
Proc. of the 26th Euromicro Conference (Euromicro
Workshop On Multimedia and Telecommunications),
Maastricht, the Netherlands, September 2000


