
Authentication and enterprise secured data storage

Nathanael Cottin Bernard Mignot Maxime Wack
SeT Laboratory SeT Laboratory SeT Laboratory

University of Technology University of Technology University of Technology
of Belfort – Montbeliard of Belfort – Montbeliard of Belfort – Montbeliard

90010 Belfort 90010 Belfort 90010 Belfort
France France France

Abstract −−−− Data certification and digital signature are a new
area of interest and many standards have emerged. Indeed,
these technologies offer identification, authentication and non-
repudiation capabilities during Internet transactions (emails
and e-commerce). However, it appears that both certification
and digital signature do not completely answer enterprise data
authentication and secured data storage needs.

We submit a proposition of an authorities-based architecture
to answer these issues. This architecture relies on most of the
available standards.

I. INTRODUCTION

Electronic certification and enterprise secured data storage
are a new area of interest. The main goal to achieve is to
delegate documents management to storage trusted third
parties (i.e. TTP) [26] in case that these documents are
protected by cryptography and digital signature. This
procedure implies the use of technical solution which first
give legality to electronic documents (with the supply of a
certification procedure) and second allow enterprise private
data transfer to in accordance with individuals privacy.

Standards emerge to meet the demands for data protection
as well as individuals identification and programs
authentication in most areas of data communications.

Electronic certificates combined with cryptography partly
answer tiers-based secured data storage. However, existing
techniques suffer from their lack of large scaled application.

In this article we discuss a proposition of an authorities-
based architecture. This architecture is designed to supply
enterprise needs in terms of data certification and storage. It
relies on most of the existing standards (X.509 [18],
certificate requests [27], OCSP [28], TSP [1] and related
standards).

II. CERTIFICATION PROCESS

Message transfer in general and through the Internet in
particular suffers from its historical non-secured architecture.
Communication may be secured by encryption protocols
such as SSL [14] and PPP [21], it is often more valuable to
undoubtly identify the sender and authenticate the received
message than authenticate hardware or applications (web
browsers for example). Thus, the receiver of a message does
not have any concrete proof of the sender's identity. It may
happen that a man in the middle (MITM) masquerades as the
real sender of the message [21]. Neither can the receiver
prove that the message he received was the message the
sender intended to communicate.

These two common security issues may be overcome by
the use of digital signature and electronic certificates.

A. Digital signature and message signing basics

Digital signature is the current way of authenticating
electronic data. It is the achievement of many research on
asymmetric key cryptography and hashcoding.

A1. Asymmetric key cryptography concepts

When a sender entity (a person, a server or a program)
needs to securely send a message to a receiver entity, it
encrypts the message using the receiver's public key. This
key is published so that any sender can make use of the
receiver's public key to encrypt data. The encrypted message
is then unintelligible and cannot be decrypted without the
corresponding private key. This private key must be securely
stored by the receiver that does not publish it. Only the
receiver would then be able to decrypt the encrypted
message. Asymmetric key cryptography achieves privacy and
confidentiality.

The most widely used asymmetric key cryptography
algorithms are RSA [35] and triple-DES [32].

A2. Hashcoding overview

Hashcoding [26] aims at creating a fixed-length message
digest from any arbitrary-length data stream. This digest is
size-independent of the size of the source stream. Let's
consider h(), a one-way hash function used to compute a
digest on a given stream s. The most important property of
this function prevents source stream reconstruction only if
the computed digest is known. Although reconstructing the
original stream s from a given digest d may theorically be
possible, it appears to be computationally unfeasible:

()() ()()()01 →=⇒= − sdhpdsh .

Moreover, the probability p that two different streams s1
and s2 obtain identical digests with a given hashcoding
algorithm ha reaches zero. The hash function is then said
collision resistant:

() () ()()()0,, 2121 →=⇒≠ hashhashpss .

Many digest algorithms such as MD2 [22], MD4 [40] and
RIPEMD [7] [36] have been developped. The most popular
algorithms SHA-1 [30] and MD5 [41] are specifically
designed to compute digital signatures.

A3. Digital signature

Digital signatures defined by [33] reproduce waxed seals
used in the Antiquity to seal letters up.

The seal may be compared to a secret signature key that
should only be in possession of the signer, i.e. the entity that
signed the message. Although a seal remains identical
independantly of the letter information, the digital signature
is message-dependent. This means that applying a signature
key (the signer's private key) on two different streams will
result on two different digital signatures. On the contrary, the
same stream will always generate the same signature in case
a given signature algorithm is used. However, the signer's
unique corresponding verification key (its public key) may be
used to make sure the signature has been computed using its
signature key.

Digital signatures generation is nothing but the application
of asymmetric key cryptography over streams hashcodes.
Unlike data encryption, digital signature's purpose does not
consist of data confidentiality but rather in providing [21]:

• Data integrity: digital signatures allow to detect
source streams alteration, i.e. unauthorized data
modification

• Authentication: as the signature key is (theorically)
owned by the signer only, it is impossible for anyone
else to generate the sender's signature on a given data
stream. The stream is authenticated by comparing the
signature with the signer's corresponding verification
key

• Non-repudiation: this authentication-based service is
a proof of transaction effectiveness. The signature
entity cannot deny being the author of the signature
because nobody else could possibly have created such
a signature on a given data stream.

Digital signature is generally computed on hashcodes
rather than directly using data source streams. The main
reason is that digital signature is more time and processor
consuming than the hashcoding process. It is then profitable
to apply digital signature generation algorithms (DSA [33]
and ECDSA [20] [2] for example) on hashcodes.

Although digital signature makes it possible to
authenticate received data, it does not identify the entity that
signed the data (the signer) from the receiver point of view.
Thus, any irrefutable link exists between the signer and its
signature key. Such identification is provided by electronic
certificates.

B. Electronic (qualified) certificates

An electronic qualified certificate (i.e. certificate) is an
electronic proof of identity (fig.1). It is designed to allow
senders identification by signed messages receivers.
Certificates trust depends on their issuers trust. Only
Certificate Authorities (CAs) are considered as TTPs in PKIs
which rely on the X.509 standard [25]. Other entities are not
accredited by governments to deliver electronic certificates.
Once an adequation between an entity and a signature key
has been demonstrated, a qualified certificate is issued.

Fig.1 Certificate common description

Each certificate is identified by its unique serial number
given by the issuing Certificate Authority (CA). Indeed,
electronic certificates' primary rule is to associate a signature
verification key and a signer. Depending on the signature key
rules, they may be used for:

• Secure emails: certificates may be integrated within
secure email standards such as PGP [16] [5] [10],
PEM [24] [23] [3] and S/MIME [37] [38]

• Code-signing: Java Archives [42] [13] and Microsoft
Authenticode [17] make the most of code certification
needs

• Identify parties: during Internet transactions, end-
entities may be identified by decoding their digital
signatures with their verification key. This key is
enclosed in their certificates.

Certificates are valid until they are revoked or until they
expire (fig.2). In both cases a new certificate may be re-
issued by the CA. A certificate revocation occurs when its
owner is aware that the certificate is corrupted or that a non-
authorized entity may have used it. It may also be possible
for the government or the CA to revoke a certificate in case
its owner makes fraudulent use of it.

Fig.2 Certificate lifecycle

Certificates and digital signatures main goals are entities
(individuals, servers and programs) identification as well as
data authentication. This leads to design a trusted authority
responsible for secured data storage considering that such a
TTP may securely and legally store enterprise data.

III. ARCHITECTURE OVERVIEW

We designed an authorities-based architecture (fig.3)
where each authority plays a key role to authenticate data and
certify documents and identities (individuals, enterprises,
servers or programs). The starting point of this architecture is
the CA which delivers electronic certificates. It is crucial that
certificates delivery assures that any certificate is given to the
right person and that the enclosed information is valid and
verified. The CA may be the weakest authority in case
secured certificate delivery protocols (SCDPs) are not
supplied. In such a case, digital signature would lose its legal
scope considering that signatures rely on certificates'
trustworthiness.

Fig.3 Architecture overview

Assuming that certificates are delivered without any
possible corruption or fraud, the architecture is articulated
around five other authorities (all of them are TTPs):
Timestamping Authorities (TSAs), Signature Authorities
(SGAs), Key Recovery Authorities (KRAs), Storage
Authorities (SAs) and Transactions Authorities (TAs). The
last two authorites will be discussed within dedicated
sections.

A. Timestamping Authority

A Timestamping Authority (TSA) attributes a legal time
value to a given message digest. Thus, a signature has no
legal value if not timestamped because there would be no
way to control that the signature was created while the
signer's certificate was valid (not revoked or expired). It is
also used to authenticate a document and repudiate a
fraudulent copy of it – in case the original document was
signed before the copy.

As an extension of the digital signature structure presented
by [18] and expressed with the ASN.1 [8] notation, a legal
signature includes a timestamp based on the Time Stamp
Protocol (TSP).

It may be composed of the following information:

Module-LegalSignature
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

LegalSignature ::= SEQUENCE {
signature Signature,
-- of a document
timestamp Time,
-- given by a TSA
tsaSign TSASignature

}

Signature ::= SEQUENCE {
algorithmId Identifier,
policy [0] IMPLICIT Policy OPTIONAL,
sign BIT STRING,
issuer Issuer

}

Time ::= CHOICE {
utcTime UTCTime,
generalTime GeneralizedTime
-- SHOULD be preferred to UTCtime (from TSP)

}

TSASignature ::= SEQUENCE {
sign Signature,
-- signature of the TSA
accreditations Accreditations OPTIONAL
-- requested accreditations

}

Policy ::= Identifiers

Identifiers ::= SEQUENCE OF Identifier

Identifier ::= SEQUENCE {
id OBJECT IDENTIFIER,
parameters ANY DEFINED BY id OPTIONAL

}

Issuer ::= ReqCert
-- ReqCert defined by OCSPv2
-- to make it OCSPv2 compliant

ReqCert ::= CHOICE {
certID CertID,
issuerSerial [0] IssuerAndSerialNumber,
pkCert [1] Certificate,
-- as described in RFC2459
name [2] GeneralName,
-- as described in RFC2459
certHash [3] OCTET STRING

}

CertID ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier,
-- as described in RFC2459
issuerNameHash OCTET STRING,
issuerKeyHash OCTET STRING,
serialNumber CertificateSerialNumber
-- as described in RFC2459

}

IssuerAndSerialNumber ::= SEQUENCE {
name RDNSequence,
serial CertificateSerialNumber
-- as described in RFC2459

}

Accreditations ::= SEQUENCE OF Signature
-- signatures of Accreditors
-- Accreditors check that the proposed
-- timestamp is valid (under a policy-specified
-- time delay).

CertificateSerialNumber ::= INTEGER
-- certificate serial number (from RFC2459)

END

In the previous structure, Signature data represent the
commonly-speaking signature [18] [29]. It is composed of
the signature itself and the signer's certificate identifier
(composed of the certificate's serial number and issuer's
name). This identifier is used to get the certificate's
information for the issuing CA and make sure the signature
information match the signed data.

Moreover, LegalSignature represents a computed
signature on any data (a message) given by another party (a
SA or a TA for example). This signature is completed with a
timestamp and may be countersigned by Timestamping
Accreditation Authorities – or Accreditors – (fig.4). This
makes sure the proposed timestamp is valid on any given
timestamping policy [12].

Fig.4 Use of timestamp accreditors

The timestamp request is given by the TSA via
TimeStampReq information proposed by [1].

The TSASignature data structure may be integrated within
pkcs#7 [35] signed-data component and TSP. The interest of
using such a definition of a legal signature is that it both
integrates timestamp tokens [1] and OCSPv2 [29] online
verification abilities.

Accreditors are appealed by TSAs via accreditation
requests. Such data structures and protocols are beyond the
scope of this article and will not be presented.

The main issues concerning such authorities are firstly
maintain a unique global clock when multiple TAs and
Accreditors are present and secondly provide a secured
timestamping environment. This is part of [19] and [12]
recommandations.

B. Signature Authority

The Signature Authority (i.e. SGA) tackles the issue of
allowing multiple signers of a given document. Indeed,
SGAs act as electronic notaries which supervise the signing
process by collecting the different signatures. Considering
that any signer would trust the other signers, SGA will be
given the ability to store (and cipher) the document.
Different signing policies are in progress to complete [11]
definitions.

An enterprise document may be a spool and be signed by
more than one person (contracts, bills, for example). As it
may have multiple owners, document signing, consultation
and removal protocols have to be defined.

The main goal to achieve is to allow multiple signers to
sign up data over the Internet. We are currently designing a
protocol to handle this issue. This protocol is based on
pkcs#7 signed-and-enveloped-data definitions. The basic
idea is that Signature Authorities supervise and manage the
multiple signature processes.

C. Key Recovery Authority

The Key Recovery Authority (i.e. KRA), also known as
Key Escrow or Trust Center, is requested by government
institutions so that they can access to encrypted data. With
cryptography legalization, asymmetric keys may be 2048 bits
length or more and makes it practically impossible to
decipher data within an acceptable time.

On the one hand, governments want to be able to decrypt
all data to make sure that secret documents do not leave their
country and stay secret, and non-authorized documents do
not circulate within their country. On the other hand,
individuals and enterprises fear for their privacy.

The latter have to give a copy of their
encryption/decryption keys to Key Recovery Authorities
which make them available to governments only if necessary.

IV. SECURED DATA STORAGE AND CONSERVATION

According to the law, electronic documents do not have
any legal scope unless they have been digitally signed (fig.5)
and the signer may be identified.

Fig.5 Digital signature utilization

Two technical issues raised here are firstly give electronic
copies of a document a similar value to the original
document and secondly securely store and conserve these
legalized electronic documents. Digital signature and
electronic certificates combined together partly answer the
first issue by respectively providing data authentication and
signers identification. However, signed documents storage
within a legal context has not been considered yet.

A. Storage Authority presentation

A Storage Authority (i.e. SA) is a TTP which responds to
enterprise document storage-related needs. These needs may
be classified as follows:

• Data integrity: this service is provided by a secured
storage combined with a digital signature which
indicates whether a given document has been
modified or not. The original document (that is the
document stored at first) must be kept by the SA to
make sure authorized governmental institutions have
access to the first version of each stored document

• Confidentiality: cryptography may be used by SAs to
make sure data is unreadable unless they explicitly
decrypt it. This software protection may be completed
by a hardware protection such as designing 3-tiers
architectures

• Access privileges: is achieved by controlling access to
stored documents. Authorized entities are
governments representatives and signers only

• Documents availability: compared to traditional data
storage, access delay to documents is less important
than documents availability and authentication. It is
the SA's responsability to make sure that any stored
document is available to an authorized entity and that
all possible actions on the document have been traced

• Documents perennity: SAs provide documents
perpetuation considering that documents may be
lifelong stored and viewed. This particular issue has
not been solved yet

• Traceability: similarly to CAs, these authorities must
establish traces for all transactions (this includes
documents storage, consultation, deletion,
modification – if applicable –). Traceability lays on
fraud detection and diagnostic.

B. Storage Authority architecture

Fig.6 SA architecture overview

The SA is basically composed of one or more secured
databases (fig.6) used to store signed documents and other
related information which give the storage a legal aspect.

We have defined a general data structure for documents to
be encapsulated within pkcs#7 base class ("just data", with
no cryptographic enhancements) and stored by SAs:

Module-Document
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Document ::= SEQUENCE {
docInfo DocumentInfo,
-- common document information,
-- such as file name, title, etc.
components SEQUENCE OF DocComponent,
-- one or more files may constitute
-- the "document"
extensions [0] IMPLICIT Extensions OPTIONAL
-- as defined in RFC2459

}

DocumentInfo ::= SEQUENCE OFIdentifiers
-- defined in Module-LegalSignature

DocComponent ::= SEQUENCE {
componentInfo DocumentInfo,
-- information concerning the component
-- such as file name, etc. to make it easy
-- to extract
componentData BIT STRING
-- and not OCTET STRING : a component may
-- be a signature

}

END

V. E-BUSINESS INTEGRATION

Electronic commerce (business conducted over the
Internet) is dramatically increasing around the world. E-
business websites benefit from our mentalities evolution even
if europeans seem to be reluctant to accept payment over the
Internet.

This situation is due to the non-legal recognition of
electronic commerce and the lack of redress definition for
both the customer and the merchant in case of fraud or
contest [15]. Particularly, transaction repudiation is still
permitted by the law.

Thus, most of the technical issues lay during data
transmission (specifically the payment) and traceability. In
case it may happen the transmitted data is lost or corrupted,
the customer will probably lose the merchant's trust.

Another minor issue is to provide a system which
simplifies the customer navigation and memorizes the
customer's actions every time he enters the merchant's
website for purchase.

A. Transaction Authority presentation

Our framework gives an answer to this unavoidable
scheme where the customer and the merchant do not trust
each other. One of the reasons is that any legal Internet
transaction traceability is defined. The basic idea is to
integrate a Transaction Authority (i.e. TA) on top of e-
commerce protocols such as ECML [34] and JCM [9] [4].
This authority must be recognized as a TTP by both the
merchant and the customer. Each transaction is then
supervised by the TA, traced and stored locally or within a
Storage Authority (the transaction trace sent by the TA is
then considered by the SA as a common message):

The idea is to define a merchant’s community of trust
(COT): each participating merchant must be labellized. This
label appears on its website and ensures customers that any
e-commerce operation is traced and supervised using the TA
technology.

B. Transaction Authority architecture

Though Transaction Authorities deal with legal
traceability within e-commerce transactions, they do not
supervise and trace any kind of business. Only registered e-
commerce sites within a given TA benefit from the services
provided by this authority. A registered site (i.e. member) is
a website hosted by the TA (fig.6).

Fig.6 TA architecture overview

Becoming a member implies acceptation of the TA's
hosting policy. This policy integrates website supervision
(which may include online tests) as well as transactions
traces.

TAs also give the opportunity to use electronic money
(i.e. e-money) to pay without providing any credit card
number to the merchant. The payment is indirectly performed
by the customer when using the following purchase
protocols.

C. Purchase protocols

To securely effect payment over the Internet, Transaction
Authorities require that the customer buys e-money to credit

his e-account. His e-account is either managed by his bank or
by the TA. Hosted vendors will then accept this electronic
money for payments. Two protocols based on Electronic
Data Interchange (EDI) [31] [43] are combined together to
allow secured e-accounts provision and electonic payments.

The first protocol (fig.7) describes the procedure to obtain
e-money credits, considering that the TA manages the
customer's e-account and that the customer is already
registered within the TA (a customer's e-account has been
created).

Fig.7 E-money account credit

The customer enters the TA's private area using a login
name and a password (or a certificate). The TA then offers to
credit the customer's e-account. The customer sends a credit
request by giving its credit card number (the customer can
also mention an automatic bank account debit) and the
amount of e-money he wants to credit. The TA initializes a
communication with the customer's bank so that the customer
agrees with his bank to debit his bank account. The customer
is notified by his bank that his account has been debited and
then by the TA that the equivalent amount for e-money has
been credited on his e-account. The customer can then make
use of his e-money.

The second protocol (fig.8) describes the procedure to use
e-money credits on the customer's e-account to purchase on a
registered e-commerce website (member). This second
protocol is fairly similar to the first protocol.

The customer logs into the member's private area. When
he decides to send a purchase order to the merchant, the
latter forwards the request to the TA by giving the customer's
identifier. The TA checks that the corresponding e-account
has enough e-money provision to perform the transaction and
sends the client a debit authorization. The client then
confirms the debit operation. Once the member's account is
credited and the customer's notifyed of his e-account debit,
the customer can then logout.

Fig.8 Purchase using e-money account

It is important to be aware that only TAs collect
information about customer's identity. Access to the
merchant's website is made possible through an identifier
which may not be linked with the customer's identity (from
the merchant's perspective).

VI. CONCLUSION AND FUTURE WORK

In this article we have presented an authorities-based
architecture that we partly implemented. This architecture
aims to respond to enterprise needs in terms of message
sender identification and received data authentication. Its
modularity resides on the distinction between multiple
trusted third parties defined by the services they can afford. It
is specifically designed to easily integrate new protocols and
tackle scalability issues. We partly implemented a prototype
based on the proposed architecture. This prototype by now
includes a Certificate Authority – which delivers X.509v3
[18] certificates – as well as a Storage Authority, a
Timestamping Authority and a Timestamping Accreditation
Authority (Accreditor) which all conform to the proposed
data structures and protocols.

We are currently working on modelling and simulating
certification protocols (SCDPs), multi-signature protocols
(MSPs) as well as defining Quality of Service (i.e. QoS)
parameters based on our previous researches [6]. At the end
of our research, it appears that new concepts such as
certificates delegation ability and intrinsic data protection are
necessary to anticipate enterprise future needs.

Most of the security issues over the Internet rely on the
data exchange protocols supplied. Next publications will
discuss our SCDPs and multi-signature protocols simulation
and validation results as well as new protocols presentation.

REFERENCES

[1] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, “RFC
3161: Internet X.509 Public Key Infrastructure: Time
Stamp Protocol (TSP)”, August 2001

[2] American National Standards Institute, “Public Key
Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm”,
January 1999

[3] D. Balenson, “RFC 1423: Privacy Enhancement for
Internet Electronic Mail: Part III: Algorithms, Modes,
and Identifiers”, TIS, IAB IRTF PSRG, IETF PEM WG,
February 1993

[4] A. Brown, “Java Commerce Messages: A messaging
format for the Java Electronic Commerce Framework”,
Sun Microsystems, 1999

[5] J. Callas, L. Donnerhacke, H. Finney, R. Thayer,
“RFC 2440: OpenPGP Message Format”, Network
Associates, IN-Root-CA Individual Network e.V., EIS
Corporation, November 1998

[6] N. Cottin, O. Baala, J. Gaber, M. Wack, “Management
and QoS in Distributed Systems”, in Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'00),
Vol. III, Las Vegas, NV, June 2000

[7] H. Dobbertin, A. Bosselaers, B. Preneel, “RIPEMD-160,
a strengthened version of RIPEMD”, Fast Software
Encryption, LNCS vol. 1039, D. Gollmann Ed., pp. 71-
82, 1996

[8] O. Dubuisson, “ASN.1: Communication between
Heterogeneous Systems”, Morgan Kaufmann Publishers,
ISBN 0-12-6333361-0, June 2000

[9] D. Eastlake, T. Goldstein, “ECML v1.1: Field
Specifications for E-Commerce”, Motorola, Brodia,
April 2001

[10] M. Elkins, D. Del Torto, R. Levien, T. Roessler,
“Draft: MIME Security with OpenPGP”, Network
Presence LLC., CryptoRights Foundation, University of
California at Berkeley, April 2001

[11] European Telecommunications Standards Institute,
ETSI TS 101 733 v1.2.2, “Electronic Signature Formats”,
December 2000

[12] European Telecommunications Standards Institute,
“Policy requirements for time-stamping authorities”,
Draft ETSI TS XXXX STF 178-T1 draft H, technical
specification, ref. DES/SEC-004007-2, Sophia Antipolis,
July 2001

[13] J. Farley, JAVA Distributed Computing, O'Reilly and
Associates, USA, ISBN 1-56592-206-9, January 1998

[14] A. O. Freier, P. Karlton, P. C. Kocher, “Draft: The SSL
Protocol Version 3.0”, Netscape Communications,
Independant Consultant, November 1996

[15] America Online and the Federal Trade Commission,
“Guide to Online Payments”, available on-line at
www.ftc.gov/bcp/conline/payments.htm, March 1999

[16] S. Garfinkel, PGP: Pretty Good Privacy, First Edition,
O'Reilly, ISBN 1-56592-098-8, December 1994

[17] S. Garfinkel, E. H. Spafford, Web Security &
Commerce, First Edition, O'Reilly, ISBN 1-56592-269-7,
July 1997

[18] R. Housley, W. Ford, W. Polk, D. Solo, ‘”RFC 2459:
Internet X.509 Public Key Infrastructure, Certificate and
CRL Profile”, Spyrus, VeriSign and Citicorp,
January 1999

[19] CSOEC-GT, “Guide de l'horodatage sécurisé”, draft
IALTA/SCOEC-GT Horodatage, IALTA France,
July 2001

[20] D. Johnson, A. Menezes, “The Elliptic Curve Digital
Signature Algorithm (ECDSA)”, Certicom Research and
University of Waterloo, Technical Report CORR 99-34,
Dept. of C&O, University of Waterloo, Canada,
August 1999

[21] M. Kaeo, Designing Network Security, Macmillan
Technical Publishing, USA, ISBN 1-57870-043-4, 1999

[22] B. S. Kaliski Jr, “RFC 1319: The MD2 Message-Digest
Algorithm”, RSA Laboratories, January 1992

[23] S. Kent, “RFC 1422: Privacy Enhancement for Internet
Electronic Mail: Part II: Certificate-Based Key
Management”, BBN, IAB IRTF PSRG, IETF PEM WG,
February 1993

[24] J. Linn, “RFC 1421: Privacy Enhancement for Internet
Electronic Mail: Part I: Message Encryption and
Authentication Procedures”, IAB IRTF PSRG, IETF
PEM WG, February 1993

[25] H. X. Mel, D. Baker, Cryptography Decrypted,
Pearson Education Corporate, ISBN 0-201-61647-5,
2001

[26] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, USA,
ISBN 0-8493-8523-7, February 2001

[27] M. Myers, C. Adams, D. Solo, D. Kemp, “RFC 2511:
Internet X.509 Certificate Request Message Format”,
VeriSign, Entrust Technologies, Citicorp, DoD,
March 1999

[28] M. Myers, R. Ankney, A. Malpani, S. Galperin,
C. Adams, “RFC 2560: X.509 Internet Public Key
Infrastructure, Online Certificate Status Protocol –

OCSP”, VeriSign, CertCo, ValiCert, My CFO, Entrust
Technologies, June 1999

[29] M. Myers, R. Ankney, C. Adams, S. Farrell, C. Covey,
“Online Certificate Status Protocol, version 2”, draft-ietf-
pkix-ocspv2-02, March 2001

[30] National Institute of Standards and Technology,
“Secure Hash Standard (SHS)”, Federal Information
Processing Standards Publication, FIPS PUB 180-1,
April 1995

[31] National Institute of Standards and Technology,
“Electronic Data Interchange (EDI)”, Federal
Information Processing Standards Publication,
FIPS PUB 161-2, April 1996

[32] National Institute of Standards and Technology, “Data
Encryption Standard (DES)”, Federal Information
Processing Standards Publication, FIPS PUB 46-3,
October 1999

[33] National Institute of Standards and Technology,
“Digital Signature Standard (DSS)”, Federal Information
Processing Standards Publication, FIPS PUB 186-2,
January 2000

[34] J. W. Parsons, “Draft: Electronic Commerce Modeling
Language (ECML): Version 2 Specification”, American
Express, February 2001

[35] RSA Data Security Inc., “Public Key Cryptography
Standards, PKCS 1-12”, available on-line at
ftp://ftp.rsa.com/pub/pkcs, 1993

[36] B. Preneel, A. Bosselaers, H. Dobbertin, “The
cryptographic hash function RIPEMD-160”,
CryptoBytes, vol. 3, No. 2, pp. 9-14, 1997

[37] B. Ramsdell, “RFC 2632: S/MIME Version 3
Certificate Handling”, Worldtalk, June 1999

[38] B. Ramsdell, “RFC 2633: S/MIME Version 3 Message
Specification”, Worldtalk, June 1999

[39] E. Rescorla, “RFC 2631: Diffie-Hellman Key
Agreeement Method”, RTFM Inc., June 1999

[40] R. L. Rivest, “RFC 1320: The MD4 Message-Digest
Algorithm”, MIT Laboratory for Computer Science and
RSA Data Security, April 1992

[41] R. L. Rivest, “RFC 1321: The MD5 Message-Digest
Algorithm”, MIT Laboratory for Computer Science and
RSA Data Security Inc., April 1992

[42] Sun Microsystems, “’Lesson: Signing and Verifying
JAR Files”, available on-line at
http://java.sun.com/docs/tutorial/jar/sign/index.html,
2001

[43] J. M. Ugljesa, “Program Management Reporting Using
Electronic Data Interchange”, September 1998

	I. INTRODUCTION
	II. CERTIFICATION PROCESS
	A. Digital signature and message signing basics
	A1. Asymmetric key cryptography concepts
	A2. Hashcoding overview
	A3. Digital signature

	B. Electronic (qualified) certificates

	III. ARCHITECTURE OVERVIEW
	A. Timestamping Authority
	B. Signature Authority
	C. Key Recovery Authority

	IV. SECURED DATA STORAGE AND CONSERVATION
	A. Storage Authority presentation
	B. Storage Authority architecture

	V. E-BUSINESS INTEGRATION
	A. Transaction Authority presentation
	B. Transaction Authority architecture
	C. Purchase protocols

	VI. CONCLUSION AND FUTURE WORK
	REFERENCES

